
MULTI-BLOCK DECOMPOSITION AND MESHING OF
2D DOMAIN USING GINZBURG-LANDAU PDE

Jovana Jezdimirović Alexandre Chemin Jean François Remacle

Université catholique de Louvain, Louvain la Neuve, Belgium jovana.jezdimirovic@uclouvain.be

ABSTRACT

An in-depth method to generate multi-block decomposition of the arbitrary 2D domain using 2D cross fields solution
of Ginzburg-Landau partial differential equation (PDE) is presented. It is relied on parameterization of multi-
block decomposition of the domain, obtained by using particular PDE for the purpose of generating direction fields,
appropriate number and localization of singular points and their separatrices. We have proved that solutions of
particular PDE imply locally integrable vector fields and have adequate distribution of singularities, advocating its
usage. Multi-block graph was generated by the separatrices and extraordinary vertices of the domain (singularities,
corners and separatrices intersections) and obtained blocks were parameterized/remeshed. As a result, a mechanism
to obtain multi-block structured all-quad mesh in automatic manner is developed.

Keywords: Ginzburg-Landau, cross fields, multi-block decomposition, all-quad mesh

1. INTRODUCTION

Multi-block structured meshes offer numerous advan-
tages for mesh generation in general, as reported by
an increasing number of authors [1, 2, 3, 4]. Some of
the crucial improvements refer to: numerical stability,
quality of the solution and computational time, effi-
cient use of advanced vector extensions (AVX) of mod-
ern microprocessors, development of efficient/optimal
preconditioners, dramatically reduced memory foot-
print and the use for multi-structured domains.

The goal of the method presented here is to obtain
automatic solution for the issue of multi-block decom-
position and all quad meshing of 2D domains starting
from a specific partial differential equation (PDE).

We consider as input a triangulated surface Ω.
Ginzburg-Landau PDE is then solved on Ω which al-
lowed computation of a cross field C̃Ω [5]. The cross
field is then used for computing a multi-block decom-
position of Ω which is a global parameterization of the
domain. In our approach, singularities are precisely
located at first, lifting of the cross field is then com-
puted and used to obtain domain separatrices. This

stage leads to a block decomposition that is used to
build a finite element quadrilateral mesh with the use
of an elliptic smoother. Figure 1 presents an overview
of the methodology.

Our method has specificities/advantages with respect
to existing methods. First, we give a proof of in-
tegrability of unitary cross field, justifying its usage
for domain partitioning. Multi-block decomposition
is generated to be aligned with the cross field. Con-
trol over adding/reducing the number of blocks for
creation/discarding of boundary layers is presented.
The numerical methodology used avoids the problem
of limit cycles in the reported examples from [6] and
[7]. Finally, the true outcome of this paper is a fully
functional multi-block mesh generator that is available
in Gmsh [8], the open source finite element mesh gen-
erator.

2. RELATED WORK

Numerous methods for field designed parameteri-
zation/remeshing have been developed in the past
decades, thorough overviews given in [9] and [10].

Figure 1: Simplicial mesh on Ω, computed cross field, generated separatrices and final quad mesh (from left hand
side to right hand side respectively)

One of the research lines generally relies on cut graph
methodology, where cross field construction is followed
by continuous parameterization, with differences on
integer rounding [11, 12]. When it comes to devel-
opments in correlation with our work, similarly to [3]
and [6], we used a PDE based approach for multi-block
decomposition purpose. In our case, more in depth
developed procedures with extension to surfaces and
specifities of the chosen PDE are shown. To avoid pos-
sible misalignments in the resulting parameterization,
contrary to [13], multi-block decomposition remained
aligned with the cross field. The techniques used for
computing the cross field are from on [5] and they may
seem to be similar to [14], although there are many
differences. Some of the crucial divergencies are: the
finite scheme relies on a Ginzburg-Landau PDE and
not on the guidance field; the degrees of freedom are
the real and imaginary parts of a vector field and not
two angles defining the parameterization; the penalty
factor is not constant, but it is governed by the mesh
size. Following the idea of the importance of improv-
ing integrability of a cross field by [14] and [15], we
have shown that, for a given cross field, it is always
possible to find a scaling scalar function allowing to
obtain a locally integrable cross field. This demonstra-
tion legitimates the usage of 2D cross fields to generate
multiblock decompositions.

3. PURPOSE OF 2D CROSS FIELDS
FOR QUAD MESH GENERATION

A 2D cross c is defined as a set of 4 orthogonal vectors
of norm l, c = {uk}k∈[|1,4|]. With a given 2D orthonor-
mal basis (x,y), uk = l cos(θ+ k π

2
)x + l sin(θ+ k π

2
)y,

represented in figure 2.

On a 2D domain Ω, for each point x ∈ Ω it is possible
to define a cross c(x). A 2D cross field on Ω is defined
as the set CΩ = {c(x),x ∈ Ω}.

Figure 2: Cross definition

In order to highlight the use of 2D cross fields for quad
mesh generation, we will focus on a 2D domain Ω con-
formal to the unit square. Let’s U be the planar unit
square, F a conformal transformation and Ω = F(U)
(figure 3).

Let’s define CU as an uniform cross field of norm 1
aligned with the principal axis of U laying in the tan-
gent space of U , and C̃Ω the image of CU by F . C̃Ω is
a representation of the jacobian of F and in the fol-
lowing we will define CΩ as the normalized jacobian of
F .

It is possible to generate a quadrilateral multi-block
decomposition of Ω by tracing integral lines of C̃Ω, rep-
resented in figure 4, which are identical to integral lines
of CΩ.

Unfortunately, the conformal transformation F is usu-
ally unknown, and computing it is a challenging pro-
cess. Instead, we will focus on computing the normal-
ized jacobian CΩ of F , knowing that on the boundary
∂Ω one direction of the normalized jacobian has to be
aligned with the normal of ∂Ω (figure 5). Therefore,
we are looking for a normalized 2D cross field CΩ on Ω,
as smooth as possible and having one direction aligned
to ∂Ω’s normal on the boundary.

Figure 3: Conformal transformation between unitary square and physical domain with associated cross fields

Figure 4: Quadrilateral multi-block decomposition of domain Ω obtained by propagating integral lines of CΩ

Figure 5: Reference problem for 2D cross field com-
putation

The quadrilateral multi-block decomposition is then
obtained by tracing CΩ’s integral lines. As we only
computed a normalized cross field, which correspond
to a normalized jacobian, one could wonder if it exists
a conformal transformation F such as its normalized
jacobian is equal to CΩ. To show that it is the case, we
will show that for a given normalized cross field CΩ, it
is easy to build a corresponding 2D cross field with the
same orientation and non uniform norms C̃Ω which is
integrable.

Assuming we know a normalized 2D cross field CΩ,
CΩ = {c(x),x ∈ Ω} with:

c = {uk}k∈[|1,4|]

uk =

[
cos(θ(x) + k π

2
)

sin(θ(x) + k π
2

)

]
, x ∈ Ω

(1)

which is completely defined by the function θ. We are

looking for C̃Ω = {c̃(x),x ∈ Ω} with :

c̃ = {ũk}k∈[|1,4|]

ũk = l(x)

[
cos(θ(x) + k π

2
)

sin(θ(x) + k π
2

)

]
, x ∈ Ω,

(2)

where θ is known, such that C̃Ω is integrable.

A 2D cross field C̃Ω is integrable if and only if for ∀x ∈
Ω, the Lie bracket of 2 orthogonal branches (ũ1, ũ2) is
equal to 0:

[ũ1, ũ2] = ∇ũ2 ũ1∇ũ1 ũ2 = ∇ũ1 · ũ2 −∇ũ2 · ũ1 = 0.
(3)

As detailed computation in Appendix B shows, for
l 6= 0, C̃Ω is integrable if l verifies:

∇(log(l)) =

[
θ,y
−θ,x

]
on Ω. (4)

As θ is known, it is easy to compute l, with a multi-
plicative constant, and build an integrable cross field
C̃Ω. As crosses of CΩ and C̃Ω have the same orientation,
integral lines of these 2 cross fields are identical. This
justifies the usage of integral lines of a normalized cross
field CΩ for generating multi-block decomposition.

Note that H = log(l) is defined in [16] as a Green’s
function that is proven, contrary to θ, to be continuous
everywhere in the domain except at singular points
where H blows up as log r which means that l tends
linearly to 0 at the vicinity of singularities.

A multi-block decomposition of a domain Ω will be
done in 2 steps. First, a normalized 2D cross field
CΩ is generated on Ω, then integral lines of CΩ are
computed to generate the multi-block decomposition.

4. GENERATING CROSS FIELD BASED
ON GINZBURG-LANDAU PDE

4.1 2D crosses representation

As presented in the previous section, it is possible to
completely define a cross with an angle θ. However,
symmetries of the cross lead to the fact that θ and
θ + k π

2
, k ∈ Z define the same cross, thus this rep-

resentation is not unique. It is possible to uniquely
define a cross using the following representation:

~u = (cos 4θ, sin 4θ), θ ∈ [0,
π

2
). (5)

In this representation, ~u is invariant by a rotation of
π
2

, thus represents a cross with 4 orthogonal branches,
as shown on figure 6 and figure 7.

Figure 6: Reference cross (left) and its representation
with 2D vector ~u (right)

Figure 7: Rotation of reference cross by θ (left) and
its representation with 2D vector ~u (right)

4.2 Computing 2D cross field through par-
tial differential equations

The idea of computing a cross field ~u = (u1, u2) is to
force crosses to be aligned with the boundaries of Ω
and to propagate those crosses inside Ω using a PDE
that eventually produces smooth cross fields. In what

follows, we propose a series of formulations that pro-
duce quite different results in practice.

The first approach is to choose ~u ∈ (H1(Ω))2 and sim-
ply minimize the Dirichlet energy:

ED(~u) =
1

2

∫
Ω

|∇~u|2dv

with appropriate boundary conditions. Minimizing
ED is equivalent to solve ∇2~u = 0. The main issue
of that simple approach is that u1 and u2 are going
to rapidly become equal to zero away from the bound-
aries. This is simply due to the mean value property of
harmonic functions. When u1 = u2 = 0, the cross di-
rection θ = 1

4
atan2(u2, u1) is undefined. Even though

cross fields issued from this naive approach are not
suitable for block decomposition, they will be used as
a starting point for other methods.

The main drawback of the first “naive” approach that
has just been presented is that ~u actually leaves S1

away from boundaries and is not a cross anymore.
There are two possible options to force ~u to stay in
S1: (i) choosing ~u ∈ S1 explicitly or (ii) choosing
~u ∈ (H1(Ω))2 and penalize ~u away from S1.

The first approach thus consists in choosing ~u ∈ S1

explicitly and writes ~u(θ) = eiθ. In this case, ~u is a
complex number with u1 and u2 as its real and imag-
inary part and u2

1 + u2
2 = 1. In this case,

min
~u∈S1

∫
Ω

|∇~u|2dv

is equivalent to

min
θ∈H1/Q

Eθ =

∫
Ω

|∇θ|2dv.

Here, θ lives in the quotient space H1/Q where Q is
the group of symmetries of the square. Angle θ thus
does not live in a linear space and minimizing Eθ is not
strictly equivalent to solve ∇2θ = 0. Solutions to that
problem have already been provided by using a mixed
integer approach [17]. It is also possible to write an
explicit smoother that averages θ locally. This method
provides exploitable results when the θ’s are initiated
by minimizing ED using the first naive approach.

Another approach is to propose an alternative energy,
namely the Ginzburg-Landay energy functional:

EGL(~u) = ED+EP =
1

2

∫
Ω

|∇~u|2+
1

4ε2

∫
Ω

(
|~u|2 − 1

)2
,

(6)
where the parameter ε has a dimension of length and
in literature is known as coherence length [16]. En-
ergy (6) contains two terms: the standard Dirichlet
energy and a penalization. The only minimizer of the
Ginzburg-Landau functional is solution of:

∇2~u+
1

ε2
~u
(
|~u|2 − 1

)2
= 0.

The only vector field that satisfies both ∇2~u = 0 and
|~u| = 1 is the constant vector field. Consequently,
whenever ε 6= 0, the Ginzburg-Landau formulation
cannot force ~u ∈ S1 everywhere and unit vectors can
only exist if they don’t actually “turn” i.e. if θ is con-
stant.

A mixed approach consists in choosing ~u ∈ H1(Ω, S1)
i.e. choosing ~u ∈ S1 while keeping both its compo-
nents. In this context, it can be shown [16] that the
only minimizer of the Dirichlet energy ED is solution
of

∇2~u+ ~u|∇~u|2 = 0.

This formulation is strictly equivalent to ∇2θ = 0.
Yet, it requires to choose ~u ∈ S1 a priori which is of
course not easy. One can penalize ~u away from S1 by
using a penalization like in the Ginzburg-Landau case
and solve

∇2~u+ ~u|∇~u|2 +
1

ε2
~u
(
|~u|2 − 1

)2
= 0.

The smoothness term of this energy functional mini-
mizes the gradient of the cross field and a penalty term
makes its norm close to unity.

Further on, 2D crossfields will be computed by min-
imizing energy functional defined by the equation 6.
Crouzeix-Raviart finite elements are used for the in-
terpolation and a Newton-Raphson scheme for solving
the nonlinear problem (computational details in [5]),
obtained result is shown in the figure 8.

Figure 8: Generated crosses on triangulated surface
Ω

4.3 Cross field topology

For the orientable surface Ω with genus g and b as
the number of connected components of ∂Ω, the Euler
characteristic χ of Ω is an integer:

χ = 2− 2g − b. (7)

Considering a mesh on Ω with n nodes, ne edges and
nf facets, the Euler formula states:

χ = n− ne + nf . (8)

According to (7) and (8) the mesh on the surface with
Euler characteristic χ 6= 0 will have irregular vertices.
As shown in [5], these irregular vertices of the mesh

are corresponding to singular points obtained by the
cross field. Moreover, their number and type depend
on Euler characteristic χ. The type of critical point
xi is defined by its index index(xi) and can be found
directly by computing:

index(xi) =
1

2π

∮
Ci

dθ (9)

where θ is an angular reference and Ci is a closed curve
on the surface Ω containing only one singularity: xi.
For a given quad mesh, a vertex xi with valance vi,
where vi represents the number of facets in the mesh
adjacent to the xi, the integral (9) is evaluated as:

index(xi) =
4− vi

4
.

Therefore, vertices with index 0, 1
4
, − 1

4
are respec-

tively adjacent to four, 3 and 5 quadrangular elements.
Dependency of number and type of singular points on
Ω with Euler characteristic χ is given by Poincaré-
Hopf theorem: ∑

i

index(xi) = χ(Ω). (10)

According to [16], the result of the minimization of
the Ginzburg-Landau energy (6) in 2D supports coex-
istence of index(xi) = ± 1

4
, as shown on figure 9.

Figure 9: Coexistance of positive singularity (red)
and negative singularity (blue) in 2D

In a special case, following [18], the result of (6) for
~u ∈ S1/CN , corresponds to the elliptic Fekete points
on a sphere (figure 10).

Figure 10: Singular points forming an anticube on
the sphere

5. TRACING SEPARATRICES

As already reported [3, 6, 7, 13] the tracing of sepa-
ratrices of computed cross field accomplishes the goal
of domain partitioning. This section describes pro-
cedures for generating the separatrices on arbitrary
2D domain Ω. Our algorithm is divided into three
stages: (i) the initiation of separatrices on a locally
small neighborhood containing one singular point, (ii)
the propagation of separatrices on the whole domain Ω
and (iii) a post processing stage that allows to obtain
the minimal number of separatrices.

5.1 Initialization of separatrices inside the
critical elements

A triangular element Ci, i ∈ [|1;n|] of the mesh is con-
sidered critical if a singular point is located at its ver-
tex, edge or area, [3, 18]. For the sake of consistency
with the numerical scheme used (i.e. Crouzeix-Raviart
finite elements), singular points Si, i ∈ [|1;n|] will be
located on the middle of the edges where cross field
vanishes. By traversing all edges of the mesh and find-
ing the locations with the smallest ||~u||, the critical
elements are marked and singular points extracted.

For the purpose of separatrices propagation on each
critical element Ci, we iterated over each edge of Ci
to find points where the cross field is aligned with a
singularity Si, i.e. fulfilling 11 or 12. Finding values
of a cross field in these points is done by linear inter-
polation, similarly as in [3].

θPi = θPiSi ± α (11)

θQi = θQiSi ± α (12)

with α representing the tolerance criteria.

Figure 11: Obtaining separatrices on Ci

5.2 Propagation of separatrices on the
whole domain Ω

In order to obtain a decomposition of the domain Ω,
separatrices are propagated through a finite number
of elements of triangulation T = Ti − {C1, ..., Cn} fol-
lowing the adequate direction of the cross field until
stopping criteria is fulfilled. We used the propagation
scheme described in [3] relying on Heun’s (a variation
of Runge-Kutta 2) numerical scheme:

P ′i+1 = Pi + h′i · ~ui(Pi) (13)

~di =
~ui(Pi) + ~ujP

′
i+1

2
(14)

Pi+1 = Pi + hi · ~di (15)

where Pi is no-singular point on critical element Ci; ~ui
and ~uj are cross field directions; h′i and hi represent
the mesh size dependent step and Pi+1 is computed
point. More detailed, as shown on figure 12, the al-
gorithm aims to compute the point Pi+1, where Si
represents a critical point, and Pi is derived based on
information about the direction ui which is the clos-
est one to the input direction ~pi =

−−→
SiPi. Further on,

the information about the direction ~uj , at the cross
at point P ′i+1 is used to obtain direction ~di generat-
ing point Pi+1 and allowing further propagation in the
same manner.

Figure 12: Separatrices propagation method

5.3 Stopping criteria for separatrices prop-
agation

Separatrices generated in the manner described above
are traced until they reached critical patch Epi (fig-
ure 13) or boundary ∂Ω. For the computational pur-
poses we defined a critical patch Epi around each sin-
gular point Si, which represents a set of triangles with
a locally small distance r from Si.

Figure 13: Critical patch

5.4 Cleaning the redundant separatrices

Presented method for separatrices propagation is not
generating a minimal number of separatrices needed
for multi-block decomposition of Ω. This result is a
direct consequence of allowing the propagation of the
same separatrice from two different singular points (as
shown in figure 14).

Figure 14: Multi-block decomposition of a circle:
separatrices before (left) and after cleaning (right)

In order to obtain the minimal number of separatrices,
we developed the procedure, detailed in algorithm 1,
to determine and discard redundant ones. Two or
more separatrices are defined as redundant if they
have: identical beginnings, identical endings and in-
tersect the same set of separatrices. An example for
two redundant separatrices is given in figures 15-16.
In red are represented two singular points, in black
generated separatrices and in blue and green two sep-
aratrices meeting the criterion for defining redundant
separatrices exposed previously.

Figure 15 is a case where the set of separatrices inter-
sected is empty. The block generated by redundant
separatrices (in white) is made of two edges and can
be removed by deleting one of the redundant separa-
trices without modifying the type of adjacent blocks

(in grey).

Figure 15: An empty set of separatrices’ intersection
(before and after)

Figure 16 is a case where the set of separatrices in-
tersected is not empty. Redundant separatrices cre-
ate the quadrangular blocks and two triangular blocks
(in white). Deleting one of the redundant separatri-
ces removes all blocks in white (including triangular
blocks) without modifying the type of adjacent blocks
(in grey).

Figure 16: Not an empty set of separatrices’ inter-
section (before and after)

Therefore, for each group of redundant separatrices
a random one is chosen to be kept and all the other
(redundant) separatrices are removed.

Algorithm 1 Obtain minimal number of separatrices

while There is a non-traversed separatrice i do
Determine beginning and ending of separatrice i
Associate these data to separatrice i attributes

end while
Define groups by gathering separatrices with the
same beginning and the same ending
while There is a non-traversed separatrice i do

Determine which separatrices from other groups
separatrice i is intersecting

end while
Find redundant separatrices
Discard copies

The reason for taking into account separatrices inter-
sections is demonstrated in figures 17-18: separatrices
number 1 and 2 have the same beginnings and endings
(belong to the same group), but they are intersecting
different sets of separatrices (as for separatrices 3 and
4).

Figure 17: Multi-block decomposition of a torus

Figure 18: Overview of intersecting separatrices

6. EXAMPLES OF MULTI-BLOCK
DECOMPOSITION

In this section we present the results obtained by ap-
plying Ginzburg-Landau PDE for the purpose of gen-
erating multi-block decomposition of the given domain
Ω. By the definition of separatrices, each block is
smooth inside which allows meshing with quad ele-
ments. The quality of the mesh generated in this man-
ner is expected to be high, due to the proven torsion
free properties of a generated cross field.

In the following, we demonstrate the dependency of
generated multi-block decomposition on:

• geometrical properties of the domain
(figures 19/20)

• the type of boundary conditions imposed
(figures 21/22)

• the value of coherence length parameter ε
(figure 23).

Depending on requirements, we can add (remove) a
boundary layer (as shown in figures 21/22) by impos-
ing weak or strong boundary conditions. Using differ-
ent values for global coherence length ε, we can gen-
erate different multi-block decompositions of the same
domain. As shown on the figure 23, both of the de-
compositions are valid.

Figure 19: Eccentricity e = 0.71

Figure 20: Eccentricity e = 0.95

Figure 21: Imposed weak boundary conditions

Figure 22: Imposed strong boundary conditions

Figure 23: Coherence length ε = 0.001 (left) and
ε = 0.01 (right)

We have chosen a few examples (figures 24-29) to
demonstrate abilities of our algorithm for creating the
multi-block decomposition of topologically and/or ge-
ometrically challenging domains.

Figure 24: Euler characteristic χ = −3

Figure 25: Euler characteristic χ = −6

Following [5], generating cross field using Ginzburg-
Landau functional has many desirable properties for
meshing purposes. Recent reports on cross field gen-
eration ([6, 7]), pointed out the existence of the limit
cycle, defined as one or more separatrices failure to
converge to a singular point or a boundary, which pre-
vents generating multi-block decomposition of the do-
main. The decompositions we obtained, on reported
domains by [6] and [7], are shown in figures 30 and 31.

Figure 26: Closed manifold 1

Figure 27: Closed manifold 2

Figure 28: Open manifold

Figure 29: Multi-block decomposition of the wing

Figure 30: Multi-block decomposition by [6] (left)
and by our approach (right)

7. PLANAR GRAPH EMBEDDING OF
THE MULTI-BLOCK
DECOMPOSITION

For the purpose of the efficient and practical repre-
sentation of complex domains Ω, according to [10],
we will generate the planar graph embedding based
on its multi-block decomposition (figure 32). To
do so, we will use extraordinary vertices Ti, i ∈
{1, · · · , n}, defined as singular points, corners and
intersections between separatrices and separatrices
with ∂Ω. These vertices are further on used for

Figure 31: Multi-block decomposition by [7] (left)
and by our approach (right)

creating the graph Γ = {V,E} defined by vertices
V = {T1, T2, . . . , Tn} and corresponding edges E =
{{T1, T2}, {T2, T3}, . . . , {Tj , Tn}}. For the purpose of
meeting well-defined connectivity (figure 33) data in-
formation of orientation is associated with each ex-
traordinary vertex Ti: Tm, Tn, Tp, e.g. listing of neigh-
bors in counter-clockwise direction, where from graph
edges E are derived. Information on orientation and
data structure ensured that each edge will be traversed
only once and all quads Qi = {Ti, Tj , Tk, Tt} will be
extracted. The used algorithm 2, showed below, is the
adaptation of work described by [19].

Figure 32: Illustration of a multi-block decomposi-
tion (left) and its planar graph embedding (right)

Figure 33: Importance of orientation data: con-
nected (left) and disconnected graph (right)

Algorithm 2 Generate the graph

Compute extraordinary vertices Ti
Associate orientation data to each Ti
while There is a non-traversed oriented edge {TiTj}
do

Take the first edge TiTj
Take Tk - the counter-clock oriented neighbor of
Tj which is before Ti
Take Tt - the counter-clock oriented neighbor of
Tk which is before Tj
Define the quad Ql = {Ti, Tj , Tk, Tt}

end while

The obtained patches Q = Q1

⋃
Q2

⋃
. . .
⋃
Qn, by the

definition of separatrices and singular points, have a
smooth cross field inside, allowing further on parame-
terization/remeshing.

8. WORKFLOW FOR PLANAR
DOMAINS

In case of planar domain Ω, blocks defined by a pla-
nar graph embedding, are directly used for applying
algebraic (1) and afterwards (2) elliptic grid genera-
tion (figure 34). The result obtained is all quad mesh.
Theoretical and computational details on these meth-
ods are given in the following sections.

8.1 Transfinite bilinear interpolation

For the aim of refinement of each block, transfi-
nite interpolation (TFI) is used as a, according to
[3, 20, 21], computationally efficient algebraic grid gen-

1 2

Figure 34: Illustration of the pipleine for the planar
cases

eration technique. The grid obtained with this proce-
dure is structured, conforming the ∂Ω and has con-
trolled grid spacing. For a given physical domain Qi,
defined with parameterized curves ~c1(u), ~c3(u), ~c2(v)
and ~c4(v) (shown in figure 35), the position of point
~Xi(u, v) in the given domain is defined by the equation
16:

Figure 35: TFI grid points on physical domain Qi

~Xi(u, v) = (1− v) · ~c1(u)
+ v · ~c3(u) + (1− u) · ~c2(v) + u · ~c4(v)

−
[
(1− u) · (1− v) · ~T12

+u · v · ~T34

+u · (1− v) · ~T14

+(1− u) · v · ~T32

]
.

(16)

As a result, a structured quad mesh Mt = (V,E,Q),
with vertices V , edges E and corresponding quadrilat-
erals Q is generated (figure 36 left).

Figure 36: TFI mesh (left) and mesh smoothing
(right)

In order to obtain better orthogonality and improve
overall quality of elements in the quad mesh obtained,
bilinear TFI has been used as a step towards imple-
menting a PDE based meshing technique (figure 36
right).

8.2 Grid smoothing

To insure robustness and computational efficiency of
a PDE based algorithm, which can be adopted for an
unstructured mesh, our approach followed the work
described in [22]. This work represents the Winslow
smoothing [23] on 2D unstructured mesh and its based
on solving the second-order nonlinear elliptic partial
differential equations:{

g22xξξ − 2g12xξη + g11xηη = 0

g22yξξ − 2g12yξη + g11yηη = 0
(17)

with g11, g12 and g22 computed as:
g11 = xξxξ + yξyξ

g12 = xξxη + yξyη

g22 = xηxη + yηyη.

(18)

For the sake of completeness, the algorithm and its im-
plementation are in detail explained in the Appendix
A.

In order to determine the quality of a quad mesh, the
measure of quadrilateral element quality η(q) of the
element q with angles αi, is computed as in [24]:

η(q) = max
(

1− 2

π
max

(∣∣π
2
− αi

∣∣), 0). (19)

Improvements of the mesh quality using Winslow
smoother are shown on a few examples in the table
below. Notations used for values of the minimum and
average quality of elements are respectively ηω and
η, where η0.9 represents the percentage of elements in
the mesh whose quality is greater than 0.9 and h is
the mesh size.

Figure 37: Quality of a mesh generated using TFI

Figure 38: Quality of a mesh generated using
Winslow smoother

Figure h Algorithm Mesh quality
ηω η η0.9

Fig 37/38 0.01 TFI 0.01 0.90 0.59
Winslow 0.47 0.94 0.80

Fig 24 0.05 TFI 0.00 0.94 0.82
Winslow 0.52 0.93 0.79

Fig 25 0.01 TFI 0.14 0.92 0.73
Winslow 0.48 0.93 0.80

Table 1: Comparison of TFI and Winslow mesh qual-
ity

9. WORKFLOW FOR 2D MANIFOLDS

We will now suppose that the domain Ω we are inter-
ested in is a 2D manifold. Workflow presented previ-
ously for planar domains has to be adapted for such
domains. Indeed, the multi-block decomposition can
be done in the same manner, but the algebraic grid
generation and the elliptic grid smoothing will gener-
ate points not belonging to Ω in the general case. To
be able to follow the grid generation procedure, first
a parameterization of the domain Ω is needed. Figure
39 points out the main steps of the workflow.

Figure 39: Illustration of the pipeline for the manifold cases

9.1 Parametrization of the domain

There are many ways to parameterize arbitrary 2D
manifolds Ω [25, 26, 27] and they usually require to
split Ω in a finite number n of subdomains Ωi, i ∈
[|1, n|]. Then each Ωi is parametrized independently
from each other. Such methods could be used to fur-
ther generate grids only if boundaries of these subdo-
mains correspond to the edges of the multi-block de-
composition. The choice made here is to define each
quad of the multi-block decomposition as a subdo-
main Ωi and parameterize it independently following
the method proposed in [27] (figure 40). The parame-
terization relies on mean value coordinates [28] which
guaranties a one to one parameterization of each sub-
domain. For most of the multi-block decompositions
obtained, each block can be parameterized with only
one atlas, but it can happen that it is necessary to split
a quad block in subdomains in order to get a proper
parameterization. This kind of cases is handled by the
methodology proposed in [27].

Figure 40: Illustration of the proposed parameteri-
zation

Once each subdomain Ωi is parameterized, it is possi-

ble to generate a first grid on each Ωi with an algebraic
method and then use an elliptic smoother in order to
obtain a good quality all quad mesh.

It is important to note that, due to the choice of in-
dependent parameterization of each quad block, it is
not possible anymore as in the planar case, to optimize
the position of separatrices and extraordinary vertices
with the elliptic smoother.

9.2 Modification of original workflow

The workflow for 2D manifold is obtained by modi-
fying the workflow for planar cases through adding a
parameterization step, as presented in figure 39. First,
the mutli-block decomposition is generated. Then
each block is parameterized independently. On each
one of them, an initial grid is created in the paramet-
ric space, smoothed with Winslow smoother [22] and
then mapped back to Ω in the physical space.

10. DISCUSSION

Due to the behaviour of the cross field at the vicinity
of singular points, as well as our algorithm for creat-
ing critical patches, a triangular block can appear (fig-
ures 41 - 42). This issue is resolved by further propa-
gation (figure 41), or, in cases when neither one of sep-
aratrices from the triangular block can not be further
propagated, removal of the separatrice (figure 42).

Figure 41: Before and after applying the algorithm
for triangular block cleaning (repropagating)

Figure 42: Before and after applying the algorithm
for triangular block cleaning (removing)

When it comes to the computational cost of our
method, it is subordinated to the number of elements
of the triangulation. For most of the geometries, time
for obtaining multi-block decomposition varied from
less than one up to a few seconds with the same addi-
tion for parameterization/remeshing step. Concerning
computational time for cross field generation, the cur-
rent numerical scheme to solve the Ginzburg-Landau
PDE described in [5] is not competitive with existing
cross fields generators. Addressing this issue is the
topic of the current work.

For the future directions of the work, the authors will
address the thorough examinations of: optimization of
performance time, robustness with large-scale numer-
ical examples, reported problem of limit cycles exis-
tence and meshing with varying elements’ sizes (figure
43).

Figure 43: Uniform (left) and non-uniform quad
mesh (right)

11. CONCLUSION

This paper presents a contribution in developing an al-
gorithm for generating multi-block decomposition and
all quad mesh of manifolds. The specific interest in us-
ing cross fields for these purposes is pointed out from
a mathematical point of view. Choosing Ginzburg-
Landau PDE is advocated by fair distribution of sin-
gular points - a crucial asset for a parameterization
[29, 30]. To the best of our knowledge, the algo-
rithms to obtain the minimal number of separatrices
and the proof of local integrability of 2D cross fields
have not been exposed before. Last but not the least,
we demonstrated how to use our method to create
all quad meshes in an automatic manner and made

it available in Gmsh, the open source finite element
mesh generator.

12. ACKNOWLEDGMENTS

The present study was carried out in the framework of
the research project ”Hextreme”, funded by the Euro-
pean Research Council (ERC-2015-AdG-694020) and
hosted at the Université catholique de Louvain.

Appendix A WINSLOW SMOOTHER

Using the finite difference discretization, equations 17
can be written, for each node n of the mesh, as:

Dn(x) = G22Dξξ(xn)−2G12Dξη(xn)+G11Dηη(xn) = 0,
(20)

where G11, G12 and G22 are:

G11 = Dξ(xn) ·Dξ(xn)

G12 = Dξ(xn) ·Dη(xn)

G22 = Dη(xn) ·Dη(xn),

(21)

with values Dξ, Dη, Dξξ, Dξη and Dηη depending on
the valance vn of the node n.

By defining logical space with: ξ = cos θm, η = sin θm
at each node, where

θm =
2π ·m
vn

,

the following equations (22 - 23) are derived:
Approximations for vn = 4:

Dξ(xn) =
2

vn

vn−1∑
m=0

(xm − xn) cos θm

Dη(xn) =
2

vn

vn−1∑
m=0

(xm − xn) sin θm

Dξξ(xn) =
4

vn

vn−1∑
m=0

(xm − xn) cos2 θm

Dξη(xn) =
2

vn

vn−1∑
m=0

(x̂m − xn) cos θ̂m sin θ̂m

Dηη(xn) =
4

vn

vn−1∑
m=0

(xm − xn) sin2 θm

(22)

where:

θ̂m =
2π · (m+ 1

2
)

vn

and x̂m are associated to the diagonal nodes, as
shown in figures 44-45.

Figure 44: Dependency on vn of xn used for approx-
imation of 3 and 4-valent nodes (left to right)

Figure 45: Dependency on vn of xn used for approx-
imation of 5-valent nodes

Considering 3-valant nodes, equations demonstrated
below are considering 6 neighbouring nodes (figure 44)
and therefore the valant degree vn = 3 rises up to
vn = 6, more detailed in [22].

Approximations for vn = 3 and vn ≥ 5:

Dξ(xn) =
2

vn

vn−1∑
m=0

(xm − xn) cos θm

Dη(xn) =
2

vn

vn−1∑
m=0

(xm − xn) sin θm

Dξξ(xn) =
2

vn

vn−1∑
m=0

(xm − xn)(4 cos2 θm − 1)

Dξη(xn) =
8

vn

vn−1∑
m=0

(xm − xn) cos θm sin θm

Dηη(xn) =
2

vn

vn−1∑
m=0

(xm − xn)(4 sin2 θm − 1)

(23)

To solve the nonlinear problem Dn(x) = 0, for each
node n from Mt where boundary nodes are fixed, Pi-
card iterations are performed. In order to do so, the
following notations are defined: Mk

q as the current
quad mesh, xk the coordinates of its nodes, xk+1 the
coordinates of nodes after one smoothing iteration and
Mk+1
q the corresponding quad mesh. By computing

the values Gk11, Gk12 and Gk22 evaluated on every node

of Mk
q , we can define:

Dk
n(x) = Gk22Dξξ(x

k+1
n)−2Gk12Dξη(xk+1

n)+Gk11Dηη(xk+1
n)

for all nodes n. This system of n nonlinear equations is
put under the form Dk ·xk+1, where Dk depends only
on xk. Finding xk+1 is done by solving Dk · xk+1 =
0. Performed computational steps are described in
algorithm 3.

Algorithm 3 Solving Dn(x) = 0 with Picard itera-
tions

Define convergence criteria c
k = 0
Mk

0 = Mt

while ||Dk · xk+1||∞ > c do
Compute Gk11, Gk12, Gk22 for all nodes of Mk

q

Build Dk

Solve Dkxk+1 = 0
Generate Mk+1

q from xk+1

k=k+1
end while
Write new smoothed mesh Mw = Mk

q

Appendix B LOCAL INTEGRABILITY
OF THE CROSS FIELD

Starting from the definition of 2D cross field C̃Ω with
the non uniform norms (equation 2) and replacing the
corresponding values in equation 3, we obtain the re-
sult computed in 24, which shows that for l 6= 0, C̃Ω is
integrable if l verifies the condition 4.

[ũ1, ũ2] =

[
l,x · cos θ − l · sin θ · θ,x l′y · cos θ − l · sin θ · θ,y
l,x · sin θ + l · cos θ · θ,x l′y · sin θ + l · cos θ · θ,y

]
·
[
−l · sin θ
l · cos θ

]

−
[
−l,x · sin θ − l · cos θ · θ,x −l′y · sin θ − l · cos θ · θ,y
l,x · cos θ − l · sin θ · θ,x l′y · cos θ − l · sin θ · θ,y

]
·
[
l · cos θ
l · sin θ

]

=

[
−l · l,x · sin θ · cos θ + l2 · sin2 θ · θ,x + l · l,y · cos2 θ − l2 · sin θ · cos θ · θ,y
−l · l,x · sin2 θ − l2 · sin θ · cos θ · θ,x + l · l,y · sin θ · cos θ + l2 · cos2 θ · θ,y

]

−
[
−l · l,x · sin θ · cos θ − l2 · cos2 θ · θ,x − l · l,y · sin2 θ − l2 · sin θ · cos θ · θ,y
l · l,x · cos2 θ − l2 · sin θ · cos θ · θ,x + l · l,y · sin θ · cos θ − l2 · sin2 θ · θ,y

]

=

[
l2 · θ,x + l · l,y
l2 · θ,y − l · l,x

]
= l2

θ,x +
l,y

l

θ,y −
l,x

l

 =

[
0
0

]

(24)

References

[1] Shepherd J.F., Johnson C.R. “Hexahedral mesh
generation constraints.” Engineering with Com-
puters, vol. 24, no. 3, 195–213, 2008

[2] Benzley S.E., Perry E., Merkley K., Clark B.,
Sjaardama G. “A comparison of all hexagonal and
all tetrahedral finite element meshes for elastic
and elasto-plastic analysis.” Proceedings, 4th in-
ternational meshing roundtable, vol. 17, pp. 179–
191. Sandia National Laboratories Albuquerque,
NM, 1995

[3] Kowalski N., Ledoux F., Frey P. “A PDE
based approach to multidomain partitioning and
quadrilateral meshing.” Proceedings of the 21st
international meshing roundtable, pp. 137–154.
Springer, 2013

[4] Chan J., Wang Z., Modave A., Remacle J.F.,
Warburton T. “GPU-accelerated discontinuous
Galerkin methods on hybrid meshes.” Journal of
Computational Physics, vol. 318, 142–168, 2016

[5] Beaufort P.A., Lambrechts J., Henrotte F.,
Geuzaine C., Remacle J.F. “Computing cross
fields A PDE approach based on the Ginzburg-
Landau theory.” Procedia engineering, vol. 203,
219–231, 2017

[6] Viertel R., Osting B. “An Approach to Quad
Meshing Based on Harmonic Cross-Valued Maps
and the Ginzburg–Landau Theory.” SIAM Jour-
nal on Scientific Computing, vol. 41, no. 1, A452–
A479, 2019

[7] Fogg H.J., Armstrong C.G., Robinson T.T. “Au-
tomatic generation of multiblock decompositions
of surfaces.” International Journal for Numerical
Methods in Engineering, vol. 101, no. 13, 965–991,
2015

[8] Geuzaine C., Remacle J.F. “Gmsh: A 3-D fi-
nite element mesh generator with built-in pre-and
post-processing facilities.” International journal
for numerical methods in engineering, vol. 79,
no. 11, 1309–1331, 2009

[9] Bommes D., Lévy B., Pietroni N., Puppo E., Silva
C.T., Tarini M., Zorin D. “Quad Meshing.” Eu-
rographics (STARs), pp. 159–182. 2012

[10] Campen M. “Partitioning surfaces into quadrilat-
eral patches: a survey.” Computer Graphics Fo-
rum, vol. 36, pp. 567–588. Wiley Online Library,
2017

[11] Campen M., Bommes D., Kobbelt L. “Quantized
global parametrization.” ACM Transactions on
Graphics (TOG), vol. 34, no. 6, 192, 2015

[12] Bommes D., Campen M., Ebke H.C., Alliez
P., Kobbelt L. “Integer-grid maps for reliable
quad meshing.” ACM Transactions on Graphics
(TOG), vol. 32, no. 4, 98, 2013

[13] Myles A., Pietroni N., Zorin D. “Robust field-
aligned global parametrization.” ACM Transac-
tions on Graphics (TOG), vol. 33, no. 4, 135, 2014

[14] Ray N., Li W.C., Lévy B., Sheffer A., Alliez P.
“Periodic global parameterization.” ACM Trans-
actions on Graphics (TOG), vol. 25, no. 4, 1460–
1485, 2006

[15] Diamanti O., Vaxman A., Panozzo D., Sorkine-
Hornung O. “Integrable polyvector fields.” ACM
Transactions on Graphics (TOG), vol. 34, no. 4,
38, 2015

[16] Bethuel F., Brezis H., Hélein F., et al. Ginzburg-
Landau Vortices, vol. 13. Springer, 1994

[17] Bommes D., Zimmer H., Kobbelt L. “Mixed-
integer quadrangulation.” ACM Transactions On
Graphics (TOG), vol. 28, no. 3, 77, 2009

[18] Jezdimirović J., Chemin A., Beaufort P.A.,
Remacle J.F. “Elliptic Fekete points obtained by
Ginzburg-Landau PDE.” Proceedings, 26th in-
ternational meshing roundtable. Sandia National
Laboratories Albuquerque, NM, 2017

[19] Brinkmann G., McKay B.D., et al. “Fast genera-
tion of planar graphs.” MATCH Commun. Math.
Comput. Chem, vol. 58, no. 2, 323–357, 2007

[20] Thompson J.F., Soni B.K., Weatherill N.P. Hand-
book of grid generation. CRC press, 1998

[21] Mukherjee N. “CSALF-Q: A bricolage algo-
rithm for anisotropic quad mesh generation.”
Proceedings of the 20th International Meshing
Roundtable, pp. 489–509. Springer, 2011

[22] Knupp P.M. “Winslow smoothing on two-
dimensional unstructured meshes.” Engineering
with Computers, vol. 15, no. 3, 263–268, 1999

[23] Winslow A.M. “Numerical solution of the quasi-
linear Poisson equation in a nonuniform triangle
mesh.” Journal of computational physics, vol. 1,
no. 2, 149–172, 1966

[24] Remacle J.F., Lambrechts J., Seny B., Marchan-
dise E., Johnen A., Geuzainet C. “Blossom-Quad:
A non-uniform quadrilateral mesh generator us-
ing a minimum-cost perfect-matching algorithm.”
International journal for numerical methods in
engineering, vol. 89, no. 9, 1102–1119, 2012

[25] Remacle J.F., Geuzaine C., Compere G.,
Marchandise E. “High-quality surface remeshing
using harmonic maps.” International Journal for
Numerical Methods in Engineering, vol. 83, no. 4,
403–425, 2010

[26] Marchandise E., de Wiart C.C., Vos W.,
Geuzaine C., Remacle J.F. “High-quality surface
remeshing using harmonic mapsPart II: Surfaces
with high genus and of large aspect ratio.” Inter-
national Journal for Numerical Methods in Engi-
neering, vol. 86, no. 11, 1303–1321, 2011

[27] Beaufort P.A., Geuzaine C., Remacle J.F. “Auto-
matic surface mesh generation for discrete mod-
els. A complete and automatic pipeline.” Submit-
ted

[28] Floater M.S. “Mean value coordinates.” Com-
puter aided geometric design, vol. 20, no. 1, 19–
27, 2003

[29] Vaxman A., Campen M., Diamanti O., Panozzo
D., Bommes D., Hildebrandt K., Ben-Chen M.
“Directional field synthesis, design, and process-
ing.” Computer Graphics Forum, vol. 35, pp. 545–
572. Wiley Online Library, 2016

[30] Nieser M., Polthier K. “Parameterizing singulari-
ties of positive integral index.” IMA International
Conference on Mathematics of Surfaces, pp. 265–
277. Springer, 2009

